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Abstract

Background: The identification of new diagnostic or prognostic biomarkers is one of the main aims of clinical cancer
research. Technologies like mass spectrometry are commonly being used in proteomic research. Mass spectrometry
signals show the proteomic profiles of the individuals under study at a given time. These profiles correspond to the
recording of a large number of proteins, much larger than the number of individuals. These variables come in addition
to or to complete classical clinical variables. The objective of this study is to evaluate and compare the predictive
ability of new and existing models combining mass spectrometry data and classical clinical variables. This study was
conducted in the context of binary prediction.

Results: To achieve this goal, simulated data as well as a real dataset dedicated to the selection of proteomic markers
of steatosis were used to evaluate the methods. The proposed methods meet the challenge of high-dimensional data
and the selection of predictive markers by using penalization methods (Ridge, Lasso) and dimension reduction
techniques (PLS), as well as a combination of both strategies through sparse PLS in the context of a binary class
prediction. The methods were compared in terms of mean classification rate and their ability to select the true
predictive values. These comparisons were done on clinical-only models, mass-spectrometry-only models and
combined models.

Conclusions: It was shown that models which combine both types of data can be more efficient than models that
use only clinical or mass spectrometry data when the sample size of the dataset is large enough.
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Background
The search for relevant proteins or biomarkers is a main
issue in clinical research. Proteins that make up the pro-
teome are representative of the cellular state and at a
bigger scale of the patient’s health. The discovery of new
biomarkers would lead to more accurate diagnosis or
prognosis. Technologies like mass spectrometry (MS) are
commonly being used in clinical proteomic research. This
technology allows the separation and large-scale detection
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of proteins present in a complex biological mixture. For
each biological sample, the MS signal shows relative
protein abundance according to their molecular weight-
over-charge. The acquisition measurements reflect the
proteomic profiles of the individuals under study at a
given time.

MS signals consist in the recording of p protein inten-
sities for each of the n individuals under study. In pro-
teomic studies, the number p of recorded variables is high
compared with the number n of individuals, n � p.
By analyzing these proteomic profiles, researchers are
looking for biomarkers that allow, for example, the clas-
sification of samples to distinguish between two groups
such as healthy and sick individuals or relapse-free and
relapsed patients. In the context of clinical research,
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classical clinical variables like age, sex, or duration of the
disease, for example, are already used routinely for such
classifications. The idea in this paper was to evaluate the
predictive contribution given by MS data when combined
with classical clinical variables. To this end, models that
combine both types of variables and that improve pre-
dictions given the specificities of each ([1,2]) have to be
constructed. Classical clinical variables have already been
identified and validated through many previous studies.
High-dimensional MS data, however, are still being iden-
tified, and high dimension analysis is still a challenge in
statistics. In this paper, we propose to compare differ-
ent models using 1) clinical data, 2) MS data and 3) a
combination of both clinical and MS data. Clinical and
MS variables are combined in different ways to determine
the best way to introduce them into a single model in
terms of misclassification rate and ability to detect true
positives.

A classical tool for binary classification with clinical
data is logistic regression. Because of the multicollinearity
problem, the high dimension of MS data makes it impos-
sible to use logistic regression directly. In regression, the
system of equations becomes singular and the solution,
when it exists, is not unique. To overcome this problem, it
is necessary to add constraints in the model.

There exist mainly two kinds of approaches that have
been developed to handle this issue: penalization methods
or dimension reduction methods [3-5].

Penalization methods like ridge or lasso regression con-
sist in maximizing the log-likelihood under constraint on
the set of parameter estimates. This results in shrinkage of
the estimated parameters. Dimension reduction methods
handle the multicollinearity by projecting the data into a
lower dimension space defined by new variables, called
components. These two approaches can also be combined
into a single approach by penalizing the coefficients of the
components. Each of these three approaches can be per-
formed through different methods. The goal here is not
to make a complet review of all existing methods but to
comment some specific ones. The selected methods were
chosen because they are popular in bioinformatics and
high dimensional statistics, and representative of these
three kinds of approaches.

Among the penalization methods, ridge regression [6]
shrinks the parameter estimates through an L2 penalty.
Lasso regression [7] shrinks the parameter estimates
through an L1 penalty, thus imposing a penalty on their
absolute values. This constraint sets certain parameters
exactly to zero, which leads to the selection of the most
predictive variables. The elastic net method proposed
by Zou and Hastie [8] combines the properties of both
L2 and L1 penalties. Furthermore, boosting is another
method that can be related to the Lasso as it also uses
a penalty strategy that leads to variable selection. This

general framework is defined by a loss function and
a base procedure [9-12]. Considering the component-
wise-linear-squares base procedure and the negative log-
likelihood loss function, boosting can be used to fit high-
dimensional models with a binary response.

Another interesting alternative to handle the multi-
collinearity issue is to reduce the data dimension while
keeping the relevant features. In this case, dimension
reduction is achieved by projecting the data into a lower
dimension space defined by new variables, called com-
ponents. These components are constructed as linear
combinations of the original variables.

As for dimension reduction, Partial Least Squares
(PLS) [13-15] builds components so as to maximize the
covariance between the response and the components.
PLS was initially designed for continuous responses. To
adapt PLS to classification problems, Fort and Lambert-
Lacroix [16] proposed the Ridge PLS (RPLS) method,
which uses penalized logistic regression and PLS for
binary responses. This algorithm combines a regular-
ization step and a dimension reduction step. However,
it does not provide variable selection, making it diffi-
cult to interpret results in terms of biomarker discovery.
To produce more interpretable results, Chung and Keles
proposed a Sparse Generalized PLS (SGPLS) method.
SGPLS provides PLS-based classification with variable
selection, by incorporating sparse partial least squares
(SPLS) [17] into a generalized linear model (GLM) frame-
work. Instead of being linear combinations of all of the
variables, SGPLS components are linear combinations of
a subset of the variables selected through an elastic net
constraint [8].

In order to assess a model that combines both clini-
cal and high-dimensional data, Boulesteix and Hothorn
[18] suggested a two-step procedure using a logistic model
to estimate the parameters of the clinical variables in
step 1 and a boosting algorithm to estimate the parame-
ters of the high-dimensional data in step 2. We propose
to extend this idea to the RPLS and SGPLS algorithms.
More precisely, we propose in this paper two procedures
called RPLSOffClin (RPLS with the clinical predictor as
an offset) and SGPLSOffClin (SGPLS with the clinical
predictor as an offset) defined as follows: 1) build a clin-
ical predictor using logistic regression, 2) run a modified
RPLS or SGPLS algorithm to take into account the clinical
predictor as an offset.

The paper is organized as follows. In the first section we
present a brief review of GLM in the case of binary classi-
fication, boosting and PLS dimension reduction methods.
We then present the RPLS and SGPLS algorithms and the
extensions we propose to include clinical information. In
the second section these different methods are compared
in terms of their predictive accuracy on both simulated
and real datasets.



Truntzer et al. BMC Bioinformatics 2014, 15:385 Page 3 of 12
http://www.biomedcentral.com/1471-2105/15/385

Methods
Notations
Each of the n individuals under study is described by his
proteomics and clinical information. The n × p matrix
X = (xij), i = 1, . . . , n, j = 1, . . . , p (n � p), contains the
intensities of the p proteins. The n × q matrix Z = (zik),
i = 1, . . . , n, k = 1, . . . , q (q < n) contains the clinical
variables. The notation xi. (resp. zi.) corresponds to the
recording of all of the MS (resp. clinical) variables for each
ith individual. The recording of the jth MS (resp. clinical)
variable for all individuals is denoted x.j (resp. z.j). The
response variable y is coded as y ∈ {0, 1} with realizations
y1, . . . , yn.

Generalized linear models (GLM)
The GLM model can be written as [19]:

g(E(yi)) = ηi(γ ) = γ0+γ1zi1+. . .+γqziq, i = 1, . . . , n (1)

zij corresponds to the jth clinical variable for the ith indi-
vidual under study; yi corresponds to the response of
interest. In case of a binary y response (healthy or dis-
eased for example, coded as y ∈ {0, 1}), the logit function
is chosen as the link function.

logit(πi) = log
(

πi
1 − πi

)
, i = 1, . . . , n

with π = P(y = 1|Z).
The unknown parameters (γ0, . . . , γq) = γ ∈ Rq+1

are generally estimated by maximizing the log-likelihood
function given by

l(γ ) =
n∑

i=1

(
yizi.γ − log

(
1 + ezi.γ

))
(2)

The maximum likelihood (ML) estimators γ̂ are solu-
tions of the log-likelihood equations

∂l(γ)
∂γk

=
n∑

i=1
z′

ik(yi − πi) = 0, k = 1, . . . , q (3)

Because of the non-linearity of these equations, explicit
solutions cannot be obtained. To solve this system, the
Newton-Raphson algorithm can be used. This Iteratively
Reweighted Least Squares (IRLS) algorithm [20] deter-
mines the solution by successive approximations of γ until
convergence.

At step h, the ML estimators verify the following updat-
ing step

γ̂ h+1 =
(

Z′WhZ
)−1

Z′Whỹh (4)

where ỹh = Zγ h + y−πh

Wh is the pseudo-response and
the diagonal entries of the weight matrix Wh are wh

i =
πh

i

(
1 − πh

i

)
. Each step of the algorithm is a least square

regression of ỹh on Z weighted by Wh. At convergence, the
pseudo-variable is denoted by ỹ∗ and the weight matrix by
W∗.

Boosting
Boosting is an iterative stepwise gradient descent algo-
rithm [10,21,22]. The principle of boosting is to improve
the performance of a regression method by iteratively fit-
ting a base procedure to the residuals. At each step h the
base procedure aims at constructing a function ĝh which is
used to build the final predictor f̂ as a linear combination
of the ĝh function estimates.

In the case of high-dimensional data with a binary
response, the following loss-function is considered [12]

ρ(y, f ) = log
(

1 + e−2ŷf
)

(5)

where ŷ = 2y − 1 ∈ {−1; +1} and f = log(π/(1 − π))/2.
The base procedure is chosen as a component-wise lin-

ear least squares procedure. The main steps are described
below.

1. Initialization: h = 0, f̂ 0 = log
(

π
1−π

)
/2, where

π = P(y = 1|X), β̂0 = 0.
2. Calculate the negative gradient of the loss function:

h = h + 1, ui = − ∂
∂ f ρ(yi, f )|f h−1(xi.), i = 1, . . . , n.

3. Component-wise Linear Least Squares
base-procedure:

• Define β̂hj, the jth component of β̂h (size p), as
β̂ j = ∑n

i=1 xijui/
∑n

i=1(xij)2

• Select among the p variables the one that
minimizes the error

∑n
i=1

(
ui − β̂ jxij

)2
. Let x.sh

be the selected variable at step h.
• Build the estimate function ĝh

i = β̂sh xish ,
i = 1, . . . , n.

4. Update f̂ h = f̂ h−1 + νĝh, 0 ≤ ν ≤ 1 and β̂h =
β̂h−1 + νβ̂sh ,

5. Repeat steps 2 to 4 until h = hstop.

The number of iterations hstop ∈[0, 1000] can be deter-
mined by using the AIC criterion.

Partial least squares (PLS)
PLS is a linear method for dimension reduction in a linear
regression setting. It consists in replacing the p original
variables by r orthogonal components, th, h = 1, . . . , r,
r < p, so that the covariance between the response and
the components is maximum. These components are iter-
atively calculated as linear combinations of variables x.j,
j = 1, . . . , p

th = Xωh, h = 1, . . . , r
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where ωh is a p-length vector of weights. These weights
are such that they maximize the covariance between the
components and the response.

ωh = argmax cov2(th, y) (6)

with ω′
hωh = 1 and t′htl = 0, h > l.

The final model is defined as:

y = ∑r
h=1 thich + ε

= ∑r
h=1 Xiωhch + ε

= XβPLS + ε

where ch are the regression coefficients in the regression
of y on th, βPLS are the PLS regression coefficients and ε

the residuals.
Weighted PLS (WPLS) can be used for models suffer-

ing from heteroscedasticity. In this case, it is the weighted
covariance that is maximized: cov2 (

W1/2th, W1/2y
)
, with

W a n × n weight matrix.

Ridge partial least squares (RPLS)
The objective of RPLS is to extend the PLS method to
a binary response. The main idea is to find a continu-
ous pseudo-response which has a linear relationship with
the variables X and then perform PLS with this continu-
ous version of y. Fort and Lambert-Lacroix [16] suggested
replacing y with the pseudo-response ỹ∗ obtained at the
convergence of the IRLS algorithm. To ensure the exis-
tence of the ML estimates and thus the finite norm of
ỹ∗, they proposed using a ridge version of the IRLS algo-
rithm [23] on the high-dimensional data X. It consists in
replacing (4) by

β̂h+1
Ridge =

(
X′WhX + λ�2

)−1
X′Whỹh (7)

where λ is the shrinkage parameter and �2 a diagonal
matrix [16].

The βPLS parameters are then estimated using a WPLS
on X and ỹ∗ with the weight matrix W∗ being calculated
with the IRLS algorithm.

RPLS with the clinical predictor as an offset: RPLSOffClin
In this section, we propose to combine clinical and high-
dimensional variables using RPLS in a two-step proce-
dure.

The first step consists in fitting a logistic regression
model using the clinical variables Z only. This leads
to the estimation of the logistic regression coefficients
γ̂ = (γ̂1, . . . , γ̂q). The clinical predictor is then defined as
ηclin = Zγ̂ The objective of the second step is to build the
following model

y = ηclin + XβRPLSOffClin

where βRPLSOffClin are the parameters to be estimated.

To achieve this goal, we propose to introduce the clinical
predictor as an offset into the RPLS procedure.

For this, a modified Ridge IRLS algorithm is first used to
obtain a pseudo response ỹ∗ and W∗ at convergence.

1. Initialization: h = 0, βh
Ridge = 0.

2. Until convergence do

a. ηh = ηclin + Xβh−1
ridge

πh = 1/
(
1 + exp

(−ηh))
Wh = diag

[
πh(1 − πh)]

ỹh = Xβh−1
ridge + (

y − πh) /Wh

b. βh
Ridge = (

X′WhX + λ�2)−1 X′Whỹh

h = h + 1

Then WPLS was used to estimate the βRPLSOffClin coef-
ficients with the following objective function:

ωh = argmax cov2(W∗1/2th, W∗1/2(ỹ∗ − ηclin)
)

(8)

Sparse generalized PLS (SGPLS)
Chun and Keles transformed the maximization problem
(6) into the following minimization problem:

minω,c−κω′Mω+(1−κ)(c−ω)′M(c−ω)+δ1||c||1+δ2||c||2
(9)

subject to ω′ω = 1 and where M = X′Wỹỹ′WX and κ is a
tuning parameter.

This puts exact zeros in a surrogate weight vector c
instead of the original weight ω by imposing an L1 penalty
and by keeping ω close to c. The L2 penalty controls the
multicollinearity problem.

When Y is a univariate response, the solution to the
problem (9) is given by ĉ = (|H| − δmax1≤j≤p|Hj|

)
+

sign(H) where H = X′Wỹ/||X′Wỹ|| and δ is a tuning
parameter, with 0 < δ < 1.

In case of a binary response, the SGPLS algorithm is
declined as follows:

1. Initialization: β = 0, A = ∅, where A denotes the set
of active variables.

2. Repeat until convergence: �β̂ < ε

a. ηh = Xβh−1

πh = 1/
(
1 + exp

(−ηh))
ỹh = Xβh−1 + (

Y − πh) /W h

W h = πh (
1 − πh)

b. βh = (
X′WhX

)−1 X′Whỹh

c. Solve the optimization problem (9) and obtain
the estimate ĉ

d. Variable selection: A = {j : ĉj �= 0} ∪ {j : β̂j �= 0}
e. Perform PLS on the selected variables XA

f. Update β̂
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SGPLS with the clinical predictor as an offset: SGPLSOffClin
As for RPLS, we propose a two-step procedure to combine
clinical and high-dimensional variables using SGPLS. The
first step consists in estimating the clinical parameters γ

and the second step in estimating the MS parameters β

using a modified SGPLS algorithm. The clinical parame-
ters are estimated through a logistic regression model. The
SGPLS algorithm is modified by replacing step 2a with
that of the modified Ridge IRLS algorithm:

2 Until convergence do

a. ηh = ηclin + Xβh−1
ridge

πh = 1/
(
1 + exp −ηh)

Wh = diag
[
πh(1 − πh)]

ỹh = Xβh−1
ridge + (

y − πh) /Wh

The classic PLS performed in step 2e is replaced by a
weighted PLS with the objective function defined in (8).

Simulated data
A simulation study was conducted to assess the ability of
the methods to recover the correct estimates of γ and β

with different numbers of individuals n and variables p
under study.

The following model is considered

η = Zγ + Xβ

where Z (resp. X) is the matrix of clinical (resp. high-
dimensional) variables and γ (resp. β) the regression
coefficients vector. The number q of clinical variables is
set to q = 5, the γ -coefficients to γj = 1.5, j = 1, . . . , q
and the number p∗ of active high-dimensional variables to
p∗ = 20. The β-coefficients are fixed as follows: βk = μγj,
k = 1, . . . , p∗ and βk = 0 for k = p∗ + 1, . . . , p, where
μ controls the importance of the high-dimensional vari-
ables over the clinical ones. The variables z.j, j = 1, . . . , q,
and x.k , k = 1, . . . , p follow a normal distribution N (0, 1).
The response variable y follows a binomial distribution of
parameters n and π where π = 1/(1 + e−η).

In our simulations we chose two different cases. Case
1: the clinical variables have more predictive importance
than the MS variables, μ = 0.5. Case 2: the MS variables
are more important than the clinical ones, μ = 2. The
sample sizes n were chosen as 100, 200, 500. The num-
ber of variables p was equal to 500. For each (n, p), 50
datasets were simulated and split into one training dataset
(80% of the individuals) and one test (remaining 20% of
the individuals) dataset.

Real data
The real dataset concerns steatosis, which corresponds to
an accumulation of fat in the liver. If fatty liver disease

is allowed to progress, it will turn into steatohepatitis, a
serious inflammation of the liver. If this is not treated,
cell damage will begin to occur, potentially putting the
patient at risk of death. It is thus of major importance to
diagnose steatosis as early as possible. At the moment,
steatosis is detected through MRI techniques that may be
difficult to bear for some patients. In this study, the goal
was to look for proteomics markers that may allow the
diagnosis of steatosis through a simple blood test. Sam-
ples were collected from the Endocrinology Department
of Dijon Teaching Hospital. This single-center study was
approved by our regional ethics committee (Protection
to Persons and Property Committee, CPP Est II, France).
Written informed consent was obtained from all patients
prior to inclusion in the study. Between February 2008
and November 2010, consecutive patients were screened
prospectively at the endocrinology department for the
following inclusion criteria: type 2 diabetes, the absence
of acute or chronic disease based on the patient’s medi-
cal history, physical examination, and standard laboratory
tests (blood counts, electrolyte concentrations); and alco-
hol consumption of less than 20g/day. Patients who had
received thiazolidinediones were excluded. For the pur-
pose of this paper, the groups of patients were defined by
the terciles of the distribution of the steatosis rate mea-
sured by MRI. Patients belonging to the first third of the
set were considered at low risk of steatosis (74 patients),
and patients belonging to the last third of the set at high
risk of steatosis (76 patients). The related clinical dataset
consisted of 7 variables, namely nephropathy, level of
gamma-GT, triglycerides, ASAT and ALAT, Body Mass
Index and diabetes duration. Datasets were split 100 times
into one training dataset (80% of the individuals) and one
test (remaining 20% of the individuals) dataset.

Blood samples from each of the patients were analyzed
through MALDI-TOF mass spectrometry. After purifica-
tion using magnetic beads to retain only proteins that
had specific biochemical properties, the MS signals were
acquired with Xtrem MALDI-TOF (Bruker Daltonics,
Bremen, Germany) using ground steel target plates with
an HCCA matrix. MS signals resulting from MALDI-TOF
are contaminated by different sources of technical vari-
ations. To eliminate these variations and to extract the
biological signal of interest, a prior pre-processing step
was applied to the raw data [24-26]: 1) Elimination of the
random measurement noise with wavelet methodology.
2) Subtraction of the baseline by adjusting the smoothing
cubic spline to local intensity minima. 3) Normalization
of spectra using the Total Ion Count (TIC): intensities of
each spectrum were divided by the corresponding TIC to
allow the comparison of spectra on the same scale. 4) Peak
detection which consists in identifying m/z corresponding
to potential proteins or peptides of interest. 5) Elimination
of the interplate effect by using an empirical Bayes method
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[27]. All of the pre-processing steps were performed with
Rgui software. At the end of these steps, 183 variables
were selected as candidate markers.

Results
Compared methods
(1) Clin: logistic regression model using clinical variables

only.
(2) Boost: binomial boosting with component-wise least

squares procedure on MS data.
(3) BoostOffClin: two-step procedure proposed by

Boulesteix and Hothorn [18]: 1) estimation of the
regression coefficients for clinical variables using a
logistic model, 2) estimation of the regression
coefficients of the MS variables using a boosting
algorithm with the clinical predictor as an offset.

(4) ClinOffBoost: 1) estimation of a MS predictor using a
boosting algorithm. 2) estimation of the regression
coefficients of the clinical variables using logistic
regression with the MS predictor as an offset.

(5) SGPLS: SGPLS on MS data.
(6) SGPLSOffClin: like for method (3), the SGPLS

algorithm was run with the clinical predictor as an
offset.

(7) ClinOffSGPLS: the same as method (4), but the MS
predictor was estimated using the SGPLS algorithm.

(8) RPLS: RPLS on MS data.
(9) RPLSOffClin: like for methods (3) and (6), the RPLS

algorithm was run with the clinical predictor as an
offset.

(10) ClinOffRPLS: the same as methods (4) and (7), but
the MS predictor was estimated using the RPLS
algorithm.

Comparing methods using clinical (Clin) or MS (Boost,
SGPLS, RPLS) variables made it possible to evaluate
the predictive performances of the two types of vari-
ables independently. Comparing methods that combined
both clinical and MS data made it possible to determine
whether or not combining the two types of data improved
the prediction as expected. To determine which of the
two types of variables brought additional predictive value
to the other, the variables were combined in two differ-
ent ways. First method: prior estimation of the clinical
parameters γ̂ and then estimation of the MS parameters
β̂ in a model with the clinical predictor as an offset. Sec-
ond method: prior estimation of the MS parameters β̂ and
then estimation of the clinical parameters γ̂ in a model
with the MS predictor as an offset. Hence the additional
predictive value of MS variables was evaluated with Boost-
OffClin, SGPLSOffClin and RPLSOffClin methods, and
the additional predictive value of clinical variables with
ClinOffBoost, ClinOffSGPLS and ClinOffRPLS methods.

Tuning parameters
The glmboost function used to perform the Binomial
boosting algorithm is available in the R-package mboost
[28]. The step-length factor ν was chosen to be small since
it has been shown that it improved the predictive accuracy
[22]. Bühlmann and Hothorn [12] proposed ν = 0.1.

The parameter λ of the RPLS and RPLSOffClin algo-
rithms was chosen by cross-validation independently for
each simulated dataset and for the real dataset with λ ∈
[80, 200; 0.1]. The range for λ was chosen empirically.

The 2 parameters κ and δ of the SGPLS and SGPLSOff-
Clin algorithms were chosen by cross-validation indepen-
dently for each simulated dataset and for the real dataset,
with r ∈[1, 5] and δ ∈[0, 1; 0.1]. The range for κ was chosen
empirically.

A subject was classified in one group if its probability of
belonging to this group was higher than 0.5.

Performance assessment of the methods
Simulated data. In order to evaluate the prediction abil-
ities of the presented models, we calculated the misclas-
sification rate (MCR) as follows: 1- the model was first
estimated on the training set, 2- the estimated parameters
were then used for prediction on the test set, 3- let ŷ be
the predicted response and y the true response

MCR = card(ŷ �= y)
card(y)

∗ 100

In case of Boost (2), BoostOffClin (3), SGPLS (5) and
SGPLSOffClin (6) the number of true and false positives
among selected variables was also estimated. True posi-
tives correspond to active variables selected by one model,
whereas false positives correspond to non active variables
wrongly selected by the model.

Real data. Only the MCR was used on the real dataset.
We can note that building significance tests for L1

penalized estimation procedures with p larger than n is
still not clearly understood in the mathematical statistics
community (see, for example, the recent work by Lockhart
et al. [29] and the references therein). Furthermore, the
test procedures rely on assumptions on the correlation
among the explanatory variables (which must not be too
strongly correlated) that are clearly not satisfied in mass
spectrometry. For this reason statistical significance tests
were not employed in our study.

Simulated data
In our simulations we chose two different cases, in the
first, the clinical variables had more predictive importance
than the MS variables and in the second, the MS variables
were more important than the clinical ones. Table 1 shows
the means and the standard deviations of the MCR over
the 50 simulated datasets for case 1 for each of the com-
pared methods. Table 2 shows the same results for case 2.
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Table 1 Misclassification rate - case 1

μ = 0.5

n=100 n=200 n=500

1) Clin 28 (11) 29 (6) 27 (4)

2) Boost 46 (11) 45 (7) 37 (5)

3) BoostOffClin 30 (11) 27 (7) 18 (3)

4) ClinOffBoost 32 (11) 27 (5) 22 (4)

5) SGPLS 49 (11) 45 (8) 38 (5)

6) SGPLSOffClin 44 (13) 35 (12) 24 (5)

7) ClinOffSGPLS 32 (11) 28 (6) 23 (4)

8) RPLS 47 (12) 43 (7) 40 (4)

9) RPLSOffClin 27 (9) 27 (6) 24 (5)

10) ClinOffRPLS 39 (11) 37 (8) 34 (5)

Oracle 18 (8) 16 (5) 13 (3)

This table contains the mean and the standard deviation of the MCR over 50
simulated datasets for each compared method and for μ=0.5 (i.e. lower
predictive importance of MS data than clinical data).

These tables also show the MCR for the Oracle model.
The Oracle model was estimated using all of the clinical
variables and the active MS variables only.

MCR results
A first well-known observation was that the MCR
decreases when the number of individuals in the dataset
increases and the standard deviations are at least divided
by two, meaning that all the procedures performed bet-
ter for larger sample sizes. Comparing the MCR between
cases 1 and 2, we observed that the models involving clin-
ical variables only (resp. MS variables) performed worse

Table 2 Misclassification rate - case 2

μ = 2

n=100 n=200 n=500

1) Clin 43 (10) 43 (6) 44 (4)

2) Boost 41 (13) 28 (6) 15 (3)

3) BoostOffClin 39 (13) 30 (6) 13 (3)

4) ClinOffBoost 40 (14) 28 (7) 14 (3)

5) SGPLS 41 (11) 32 (8) 14 (3)

6) SGPLSOffClin 41 (10) 36 (8) 14 (4)

7) ClinOffSGPLS 40 (12) 32 (8) 15 (4)

8) RPLS 40 (11) 34 (7) 29 (4)

9) RPLSOffClin 38 (11) 36 (9) 30 (4)

10) ClinOffRPLS 38 (14) 34 (7) 29 (4)

Oracle 15 (8) 8 (4) 6 (2)

This table contains the mean and the standard deviation of the MCR over 50
simulated datasets for each compared method and for μ=2 (i.e. higher
predictive importance of MS data than clinical data).

(resp. better) when MS variables were more important
than when clinical variables were more important. This is
consistent with the simulation settings.

Case 1, clinical variables had greater predictive impor-
tance than the MS variables. The MCR of Clin (1) was
better than the MCR of Boost (2), SGPLS (5) and RPLS (8)
which is consistent with the case 1 simulation, in which
the clinical variables had greater predictive importance
than the MS variables. When the clinical predictor was
introduced as an offset in BoostOffClin (3), SGPLSOff-
Clin (6) or RPLSOffClin (9), the MCR was lower than for
Boost(2), SGPLS (5) or the RPLS (8). The GLM models,
which include the MS predictor as an offset (ClinOffBoost
(4), ClinOffSGPLS (7) and ClinOffRPLS (10)), were also
more efficient than Boost (2), SGPLS (5) and RPLS (8).
As expected, models that combined both types of data
were more efficient than those using only MS variables.
The information from the clinical variables was correctly
used to counterbalance the lack of information obtained
from the MS variables. ClinOffBoost (4) and ClinOffRPLS
(10) had a lower predictive performance than BoostOff-
Clin (3) and RPLSOffClin (9) suggesting that it is more
suitable to use as an offset a predictor that uses only the
most informative variables. When n = 500, BoostOffClin
(3), ClinOffBoost (4), SGPLSOffClin (6), ClinOffSGPLS
(7) and RPLSOffClin (9) were more efficient than Clin (1)
underlining the fact that a large number of individuals is
needed to recover the information when the number p of
variables is high.

Case2, MS variables had greater predictive importance
than the clinical variables. When n was large enough, all
of the models outperformed the Clin (1) model. When
Boost (2), BoostOffClin (3), SGPLS (5) and SGPLSOff-
Clin (6) were used to select variables, the MCR was lower
than was the case with RPLS (8) and RPLSOffClin (9). The
ClinOffBoost (4) and ClinOffSGPLS (7) methods had a
better MCR than the ClinOffRPLS (10) method too. These
results confirm the advantage of the dimension reduction
performed through the variable selection process over the
dimension reduction performed by PLS only.

Variable selection
To evaluate and compare the performance of variable
selection performed by Boost and SGPLS, we calculated
the true and false positives for each of the methods.
The influence of the clinical information on the selec-
tion was evaluated by comparing true and false positives
obtained for Boost (resp. SGPLS) and BoostOffClin (resp.
SGPLSOffClin).

Figure 1 presents the true positive (TP) and false posi-
tive (FP) results for Boost and BoostOffClin. The number
of TP quickly tended towards the true number of active
variables (p∗ = 20) as n increased, and was higher in
case 2 than case 1. The number of FP was lower for



Truntzer et al. BMC Bioinformatics 2014, 15:385 Page 8 of 12
http://www.biomedcentral.com/1471-2105/15/385

Figure 1 True and False Positives for the Boost and BoostOffClin methods. Boxplots representing the distribution of the number of True and
False Positives over 50 simulated datasets for the Boost and BoostOffClin methods. The number of variables p was equal to 500 and the number of
individuals n was equal to 100, 200 or 500. Black boxplots correspond to μ = 0.5 and grey ones to μ = 2.

BoostOffClin than for Boost in both cases. Hence, the
high predictive importance of the clinical variables allows
better selection of variables. When n was large enough,
the BoostOffClin algorithm was able to select all the active
variables.

Figure 2 represents TP and FP results for SGPLS and
SGPLSOffClin. The dispersion of the number of TP was
very wide and the number of TP was much lower than
20 except in case 2 when n = 500. It was more difficult
for SGPLSOffClin than for SGPLS to identify the active
variables. The number of FP decreased and tended to 0 as
n increased.

SGPLS and SGPLSOffClin selected few non-active vari-
ables but found it difficult to identify active variables.
Although the number of FP was slightly higher with the
Boost methods than with the SGPLS methods, the num-
ber of TP was much better. In parallel Tables 1 and 2
show that Boost and BoostOffClin MCR were lower than
SGPLS and SGPLSOffClin MCR.

Real data
Figure 3 presents the distribution of the MCR for the dif-
ferent methods in the case of the Steatosis dataset. The
Clin model (1), which included only clinical variables, was

less efficient than models with only MS variables (Boost
(2), SGPLS (5) and RPLS (8)). This seems to indicate that
MS variables have more predictive information than clin-
ical variables. Most of the methods that combine clinical
and MS variables perform as well as methods that use
only one kind of information. The MCR for the Boost-
OffClin (3) and RPLSOffClin (9) methods were slightly
higher than the others, which was an unexpected findings,
as the results on simulated datasets showed an improve-
ment when both clinical and MS variables were used in the
model. By taking into account standard deviations, these
results were at least as good as those provided by the Clin
model (1). It is hard to decide which method is the best
one. This can be explained by the size of the Steatosis
dataset. Indeed, we observed on simulated datasets that
the methods provided similar results when the sample size
was below 200. However, all of the methods performed
quite well with a mean MCR equal to 30%, suggesting the
presence of potential biomarkers.

Discussion
To better understand the previous results, we were inter-
ested in the predictive part of the predictor η not
explained by the clinical variables. This quantity was
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Figure 2 True and False Positives for the SGPLS and SGPLSOffClin methods. Boxplots representing the distribution of the number of True and
False Positives over 50 simulated datasets for the SGPLS and SGPLSOffClin methods. The number of variables p was equal to 500 and the number of
individuals n was equal to 100, 200 or 500. Black boxplots correspond to μ = 0.5 and grey ones to μ = 2.

Figure 3 Misclassified rate for the steatosis dataset. Boxplots
representing the missclassification rate distribution over 100 random
test datasets for the steatosis dataset. Methods: 1. Clin, 2. Boost, 3.
BoostOffClin, 4. ClinOffBoost, 5. SGPLS, 6. SGPLSOffClin, 7.
ClinOffSGPLS, 8. RPLS, 9. RPSLSOffClin, 10. ClinOffRPLS.

obtained by projecting η onto the orthogonal of the sub-
space spanned by the clinical variables PZ c̄ = ‖(I−PZ)η‖

‖η‖
Figures 4 and 5 show the distribution of the c̄ val-

ues computed for the 50 test sets and for the simulated
datasets in case 1 and 2, respectively. Figure 6 shows the
distribution of the c̄ values for the real dataset.

In Figure 4 (when the clinical variables carry more
information than the MS variables), the c̄ distribution
for the BoostOffClin (3) and ClinOffBoost (4) methods
were close. The c̄ for the SGPLSOffClin method (6) was
higher than that for ClinOffSGPLS (7). The c̄ value for
the RPLSOffClin method (9) was lower than that for the
ClinOffRPLS method (10). When comparing results for c̄
and MCR, we can see that their distribution evolved in
the same way. The greater the amount of clinical informa-
tion in the predictor, the more efficient the prediction. In
Figure 5, the information was carried by the MS variables.
In this case, the c̄ value was high for all of the methods
and lower than in case 1, which is consistent with our sim-
ulation settings. In both cases Boost methods gave values
that were the closest to the Oracle model.

Figure 3, which presents the MCR results for the real
dataset, shows that models that included only MS vari-
ables (2, 5, 8) were more efficient than the Clin model (1).
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Figure 4 Predictive part of the predictor η not explained by
the clinical variables for case 1 - simulated data. Boxplots
representing the distribution of the part of the predictor not
explained by the clinical variables c̄ for 50 simulated test sets in case 1
(when the clinical variables carry more information than the MS
variables). Methods: 3. BoostOffClin, 4. ClinOffBoost, 6. SGPLSOffClin,
7. ClinOffSGPLS, 9. RPSLSOffClin, 10. ClinOffRPLS.

This suggests that MS variables contain more predic-
tive information than clinical variables. The c̄ distribution
observed in Figure 6 for the real dataset was similar to that
in Figure 5 for the simulated data in case 2 with n = 100.
This confirms that there was more information in the MS
variables than in the clinical variable.

Figure 5 Predictive part of the predictor η not explained by the
clinical variables for case 2 - simulated data. Boxplots
representing the distribution of the part of the predictor not
explained by the clinical variables c̄ for 50 simulated test sets in case 2
(when the clinical variables carry less information than the MS
variables). Methods: 3. BoostOffClin, 4. ClinOffBoost, 6. SGPLSOffClin,
7. ClinOffSGPLS, 9. RPSLSOffClin, 10. ClinOffRPLS.

Figure 6 Predictive part of the predictor η not explained by the
clinical variables for the steatosis dataset. Boxplots representing
the distribution of the part of the predictor not explained by the
clinical variables c̄ for 100 test sets for the steatosis datasets. Methods:
3. BoostOffClin, 4. ClinOffBoost, 6. SGPLSOffClin, 7. ClinOffSGPLS,
9. RPSLSOffClin, 10. ClinOffRPLS.

Among the variety of ways to evaluate the predictive
accuracy of the considered methods we chose to use
the MCR. This criterion is simple to compute and inter-
pret and is widely used for this purpose. Other criteria
could have been considered, such as ROC curves, which
are also suitable for evaluating and comparing the per-
formances of classification models when the response
variable is binary. Even if we believe that it would not have
changed the main conclusions, the choice of the MCR
rather than the ROC curve could be a limitation of our
study.

Conclusion
The identification of new diagnostic or prognostic
biomarkers is one of the main aims of clinical research.
The large number of variables compared to the num-
ber of individuals included in the study is a statistical
challenge. In this work, we have evaluated and we have
compared the predictive power of new and existing meth-
ods for binary classification in models using clinical data,
MS data or a combination of both. The proposed meth-
ods meet the challenge of high-dimensional data analysis,
including the question of the selection of predictive MS
variables. This was performed using various dimension
reduction methods and penalization methods. The eval-
uation of the methods on simulated datasets revealed the
first quite logical observation: all of the methods per-
formed better for larger sample sizes. When the sample
size was small, the misclassification rate and its dispersion
were too high to ensure fair comparison of the methods.
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The dispersion and the mean of the misclassification rates
were much lower when n was large. This recalls the impor-
tance of working with samples of sufficient size. Mainly,
it highlights that even with methods dedicated to high-
dimensional data analysis, it is a challenge to recover the
true information contained in the datasets. The second
observation was that the combination of both clinical and
MS variables made it possible to outperform methods that
used only one of the two kinds of variables. The methods
that included variable selection like boosting and SGPLS
were more efficient than methods without variable selec-
tion (RPLS). Variable selection using Boost was better
than that using SGPLS. Boosting not only selected the true
active variables, but the misclassification rate was also
lower. Despite good predictive power on the real dataset,
it is hard to compare the predictive efficiency of the meth-
ods. According to the results of the simulation study, this
was the case when working with small sample sizes. How-
ever, it is worth noting that with a sample size of 150
individuals, the real dataset we used was a classical exam-
ple of datasets available in clinical research when it comes
to high-dimensional analysis. In fact, the identification of
new diagnostic or prognostic markers is still a challenge,
due to this high-dimensional setting. Few studies have
given robust and validated results because of the difficulty
to conduct large enough studies. We may consider the
interest of making technologies evolve to study ever more
variables at the same time if the statistical methodologies
are not able to give robust results with too few individu-
als under study, which is often the case because of budget
constraints.

Keeping this in mind, to ensure good prediction, we rec-
ommend working with a large enough dataset, perform-
ing variable selection, and whenever possible, combining
clinical and MS variables.
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