
DISCRIMINANT ANALYSIS

1. Introduction

Discrimination and classification are concerned with separating objects from

different populations into different groups and with allocating new observa-

tions to one of these groups. The goals thus are

• To describe (graphically or algebraically) the difference between objects

from several known populations. We construct “discriminants” that have

numerical values which separate the different collections as much as pos-

sible.

• To assign objects into several labeled classes. We derive a “classification”

rule that can be used to assign (new) objects to one of the labeled classes.

Examples

1. Based on historical bank data, separate the good from poor credit risks

(based on income, age, family size, etc). Classify new credit applications

into one of these two classes to decide to allow or reject a loan.

2. Make a distinction between readers and non-readers of a magazine or

newspaper based on e.g. education level, age, income, profession, etc...

such that the publishers knows which category of people are potential

new readers.
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A good procedure should result in as few misclassifications as possible. It

should take into account the likelihood of objects to belong to each of the

classes (=prior probability of occurrence). One often also takes into account

the costs of misclassification. For example the cost of not operating a person

needing surgery is much higher than unnecessarily operating a person, so the

first type a misclassification has to be avoided as much as possible.
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2. Discrimination and Classification of Two

Populations

We now focus on separating objects from two classes and assigning new ob-

jects to one of these two classes. The classes will be labeled π1 and π2. Each

object consists of measurements for p random variables X1, . . . , Xp such that

the observed values differ to some extend from one class to the other. The

distributions associated with both populations will be described by their den-

sity functions f1 and f2 respectively.

Now consider an observed value x = (x1, . . . , xp)
τ of the random variable

X = (X1, . . . , Xp)
τ . Then




f1(x) is the density in x if x belongs to population π1

f2(x) is the density in x if x belongs to population π2

The object x must be assigned to either population π1 or π2. Denote Ω the

sample space (= collection of all possible outcomes of X) and partition the

sample space as Ω = R1 ∪ R2 where R1 is the subspace of outcomes which

we classify as belonging to population π1 and R2 = Ω − R1 the subspace of

outcomes classified as belonging to π2.

It follows that the (conditional) probability of classifying an object as be-

longing to π2 when it is really from π1 equals

P (2|1) = P (X ∈ R2|X ∈ π1) =

∫

R2

f1(x)d x

and the (conditional) probability of assigning an object to π1 when it in fact

is from π2 equals

P (1|2) = P (X ∈ R1|X ∈ π2) =

∫

R1

f2(x)d x
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x

y1

R 1 R 2

f 2(x)f1(x)

P(1|2) P(2|1)

Similarly, we define the conditional probabilities P (1|1) and P (2|2).

To obtain the probabilities of correctly and incorrectly classifying objects we

also have to take the prior class probabilities into account. Denote





p1 = P (X ∈ π1) = prior probability of π1

p2 = P (X ∈ π2) = prior probability of π2

where p1 + p2 = 1. It follows that the overall probabilities of correctly and

incorrectly classifying objects are given by
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P (object is correctly classified as π1) = P (X ∈ π1 and X ∈ R1)

= P (X ∈ R1|X ∈ π1)P (X ∈ π1)

= P (1|1)p1

P (object is misclassified as π1) = P (X ∈ π2 and X ∈ R1)

= P (X ∈ R1|X ∈ π2)P (X ∈ π2)

= P (1|2)p2

P (object is correctly classified as π2) = P (X ∈ π2 and X ∈ R2)

= P (X ∈ R2|X ∈ π2)P (X ∈ π2)

= P (2|2)p2

P (object is misclassified as π2) = P (X ∈ π1 and X ∈ R2)

= P (X ∈ R2|X ∈ π1)P (X ∈ π1)

= P (2|1)p1

To consider the cost of misclassification, denote





c(2|1) = the cost of classifying an object from π1 as π2

c(1|2) = the cost of classifying an object from π2 as π1

A classification rule is obtained by minimizing the expected cost of mis-

classification:

ECM := c(2|1)P (2|1)p1 + c(1|2)P (1|2)p2
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Result 1. The regions R1 and R2 that minimize the ECM are given by

R1 =

{
x ∈ Ω;

f1(x)

f2(x)
≥

(
c(1|2)

c(2|1)

)(
p2

p1

)}

R2 =

{
x ∈ Ω;

f1(x)

f2(x)
<

(
c(1|2)

c(2|1)

)(
p2

p1

)}

Proof. Using that P (1|1) + P (2|1) = 1 (since R1 ∪R2 = Ω) we obtain

ECM = c(2|1)P (2|1)p1 + c(1|2)P (1|2)p2

= c(2|1)(1− P (1|1))p1 + c(1|2)P (1|2)p2

= c(2|1)p1 +

∫

R1

[c(1|2)f2(x)p2 − c(2|1)f1(x)p1]d x

Since probabilities and densities, as well as misclassification costs (there is no

gain by misclassifying objects) are nonnegative, the ECM is minimal if the

integrand [c(1|2)f2(x)p2 − c(2|1)f1(x)p1] ≤ 0 for all x ∈ R1 which yields the

regions above.

Note that these regions only depend on ratios:

• f1(x)

f2(x)
= density ratio

• c(1|2)

c(2|1)
= cost ratio

• p2

p1
= prior probability ratio

These ratios are often much easier to determine than the exact values of the

components.
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Special Cases:

1. Equal (or unknown) prior probabilities: Compare density ratio with cost

ratio

R1 :
f1(x)

f2(x)
≥ c(1|2)

c(2|1)
R2 :

f1(x)

f2(x)
<

c(1|2)

c(2|1)

2. Equal (or undetermined) misclassification cost: Compare density ratio

with prior probability ratio:

R1 :
f1(x)

f2(x)
≥ p2

p1
R2 :

f1(x)

f2(x)
<

p2

p1

3. Equal prior probabilities and equal misclassification cost (or

p2

p1
= (c(1|2)

c(2|1))
−1)

R1 :
f1(x)

f2(x)
≥ 1 R2 :

f1(x)

f2(x)
< 1

Example 1. If we set the cost ratio equal to 2 and we know that 20% of all

objects belong to π2, then given that f1(x0) = 0.3 and f2(x0) = 0.4, do we

classify x0 as belonging to π1 or π2?

We have that p2 = 0.2 so p1 = 0.8, and p2/p1 = 0.25. Therefore, we ob-

tain

R1 :
f1(x)

f2(x)
≥ 2(0.25) = 0.5 and R2 :

f1(x)

f2(x)
< 2(0.25) = 0.5

For x0 we have
f1(x0)

f2(x0)
=

0.3

0.4
= 0.75 > 0.5

so we find x0 ∈ R1 and classify x0 as belonging to π1.
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3. Classification with Two Multivariate Normal

Populations

We now assume that f1 and f2 are multivariate normal densities with respec-

tively mean vectors µ1 and µ2 and covariance matrices Σ1 and Σ2.

3.1. Σ1 = Σ2 = Σ

The density of population πi (i = 1, 2) is now given by

fi(x) =
1

(2π)p/2det(Σ)1/2e
−1

2(x− µi)
τΣ−1(x− µi).

Result 2. If the populations π1 and π2 both have multivariate normal

densities with equal covariance matrices, then the classification rule corre-

sponding to minimizing ECM becomes:

Classify x0 as π1 if

(µ1 − µ2)
τΣ−1x0 − 1

2
(µ1 − µ2)

τΣ−1(µ1 + µ2) ≥ ln

[(
c(1|2)

c(2|1)

)(
p2

p1

)]

and classify x0 as π2 otherwise.

Proof. We assign x0 to π1 if

f1(x0)

f2(x0)
≥

(
c(1|2)

c(2|1)

)(
p2

p1

)

which can be rewritten as

e−1
2(x0 − µ1)

τΣ−1(x0 − µ1) + 1
2(x0 − µ2)

τΣ−1(x0 − µ2) ≥
(

c(1|2)

c(2|1)

)(
p2

p1

)
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By taking logarithms on both sides and using the equality

−1

2
(x0 − µ1)

τΣ−1(x0 − µ1) +
1

2
(x0 − µ2)

τΣ−1(x0 − µ2) =

(µ1 − µ2)
τΣ−1x0 − 1

2
(µ1 − µ2)

τΣ−1(µ1 + µ2)

we obtain the classification rule.

In practice, the population parameters µ1, µ2 and Σ are unknown and have

to be estimated from the data. Suppose we have n1 objects belonging to π1

(denoted as x
(1)
1 , . . . , x

(1)
n1 ) and n2 objects from π2 (denoted as x

(2)
1 , . . . , x

(2)
n2 )

with n1 + n2 = n the total sample size.

The sample mean vectors and covariance matrices of both groups are given

by

x̄1 =
1

n1

n1∑
i=1

x
(1)
j S1 =

1

n1 − 1

n1∑
i=1

(x
(1)
j − x̄1)(x

(1)
j − x̄1)

τ

x̄2 =
1

n2

n2∑

i=1

x
(2)
j S2 =

1

n2 − 1

n2∑

i=1

(x
(2)
j − x̄2)(x

(2)
j − x̄2)

τ

Since both populations have the same covariance matrix Σ we combine the

two sample covariance matrices S1 and S2 to obtain a more precise estimate

of Σ given by

Spooled =

(
n1 − 1

(n1 − 1) + (n2 − 1)

)
S1 +

(
n2 − 1

(n1 − 1) + (n2 − 1)

)
S2

By replacing µ1, µ2 and Σ with x̄1, x̄2 and Spooled in Result 2 we obtain the

sample classification rule:

Classify x0 as π1 if

(x̄1 − x̄2)
τS−1

pooledx0 − 1

2
(x̄1 − x̄2)

τS−1
pooled(x̄1 + x̄2) ≥ ln

[(
c(1|2)

c(2|1)

)(
p2

p1

)]

and classify x0 as π2 otherwise.
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Special Case: Equal prior probabilities and equal misclassification cost:

ln

[(
c(1|2)

c(2|1)

)(
p2

p1

)]
= ln(1) = 0

such that we assign x0 to π1 if

(x̄1 − x̄2)
τS−1

pooledx0 ≥ 1

2
(x̄1 − x̄2)

τS−1
pooled(x̄1 + x̄2)

Denote a = S−1
pooled(x̄1 − x̄2) ∈ IRp, then this can be rewritten as

aτx0 ≥ 1

2
(aτ x̄1 + aτ x̄2)

That is, we have to compare the scalar ŷ0 = aτx0 with the midpoint

m̂ = 1
2(ȳ1 + ȳ2) = 1

2(a
τ x̄1 + aτ x̄2). We thus have created to univariate popu-

lations (determined by the y-values) by projecting the original data on the

direction determined by a. This direction is the (estimated) direction in which

the two populations are best separated.

Remark. By replacing the unknown parameters with their estimates, there

is no guarantee anymore that the resulting classification rule minimizes the

expected cost of misclassification. However, we expect that we obtain a good

estimate of the optimal rule.

Example 2. To develop a test for potential hemophilia carriers, blood sam-

ples were taken from two groups of patients. The two variables measured

are AHF activity and AHF-like antigen where AHF means AntiHemophilic

Factor. For both variables we take the logarithm (base 10). The first group

of n1 = 30 patients did not carry the hemophilia gene. The second group

consisted of known hemophilia carriers. From these samples the following

statistics have been derived

x̄1 =


−0.0065

−0.0390


 , x̄2 =


−0.2483

0.0262


 , and Spooled =


131.158 −90.423

−90.423 108.147


 .
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Assuming equal costs and equal priors, we compute

a = S−1
pooled(x̄1 − x̄2) =


 37.61

−28.92


 and

ȳ1 = aτ x̄1 = 0.88, ȳ2 = aτ x̄2 = −10.10.

The corresponding midpoint thus becomes m̂ = 1
2(ȳ1 + ȳ2) = −4.61. A new

object x = (x1, x2)
τ is classified as non-carrier if ŷ = 37.61x1 − 28.92x2 ≥

m̂ = −4.61 and is a carrier otherwise.

A potential hemophilia carrier has values x1 = −0.210 and x2 = −0.044.

Should this patient be classified as carrier?

We obtain ŷ = −6.62 < −4.61 so we indeed assign this patient to the popu-

lation of carriers.

Suppose now that it is known that the prior probability of being a hemophilia

carrier is 25%, then a new patient is classified as non-carrier if ŷ−m̂ ≥ ln
(

p2

p1

)
.

We find ŷ − m̂ = −6.62 + 4.61 = −2.01 and

ln
(

p2

p1

)
= ln

(0.25
0.75

)
= ln

(1
3

)
= −1.10

so we still classify this patient as carrier.
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3.2. Σ1 6= Σ2

The density of population πi (i = 1, 2) is now given by

fi(x) =
1

(2π)p/2det(Σi)
1/2e

−1
2(x− µi)

τΣ−1
i (x− µi).

Result 3. If the populations π1 and π2 both have multivariate normal

densities with mean vectors and covariance matrices µ1, Σ1 and µ2, Σ2

respectively, then the classification rule corresponding to minimizing ECM

becomes:

Classify x0 as π1 if

−1

2
xτ

0(Σ
−1
1 − Σ−1

2 )x0 + (µτ
1Σ

−1
1 − µτ

2Σ
−1
2 )x0 − k ≥ ln

[(
c(1|2)

c(2|1)

)(
p2

p1

)]

and classify x0 as π2 otherwise.

The constant k is given by

k =
1

2
ln

(
det(Σ1)

det(Σ2)

)
+

1

2
(µτ

1Σ
−1
1 µ1 − µτ

2Σ
−1
2 µ2)

Proof. We assign x0 to π1 if

ln

(
f1(x0)

f2(x0)

)
≥ ln

(
c(1|2)

c(2|1)

)(
p2

p1

)
and

ln

(
f1(x0)

f2(x0)

)
= −1

2
ln

(
det(Σ1)

det(Σ2)

)
+

1

2
(x0−µ2)

τΣ−1
2 (x0−µ2)−1

2
(x0−µ1)

τΣ−1
1 (x0−µ1)

= −1

2
xτ

0(Σ
−1
1 − Σ−1

2 )x0 + (µτ
1Σ

−1
1 − µτ

2Σ
−1
2 )x0 − k
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In practice, the parameters µ1, µ2, Σ1 and Σ2 are unknown and replaced by

the estimates x̄1, x̄2, S1 and S2 which yields the following sample classification

rule:

Classify x0 as π1 if

−1

2
xτ

0(S
−1
1 − S−1

2 )x0 + (x̄τ
1S

−1
1 − x̄τ

2S
−1
2 )x0 − k ≥ ln

[(
c(1|2)

c(2|1)

)(
p2

p1

)]

and classify x0 as π2 otherwise.

The constant k is given by

k =
1

2
ln

(
det(S1)

det(S2)

)
+

1

2
(x̄τ

1S
−1
1 x̄1 − x̄τ

2S
−1
2 x̄2)
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4. Evaluating Classification Rules

To judge the performance of a sample classification procedure, we want to

calculate its misclassification probability or error rate.

A measure of performance that can be calculated for any classification pro-

cedure is the apparent error rate (APER) which is defined as the frac-

tion of observations in the sample that are misclassified by the classification

procedure. Denote n1M and n2M the number of objects misclassified as π1

respectively π2 objects, then

APER =
n1M + n2M

n1 + n2

The APER is intuitively appealing and easy to calculate. Unfortunately, it

tends to underestimate the actual error rate (AER) when classifying new

objects. This underestimation occurs because we used the sample to “build”

the classification rule (therefore we call this the “training sample”) as well as

to evaluate it. To obtain a reliable estimate of the AER we ideally consider an

independent “test sample” of new objects from which we know the true class

label. This means that we split the original sample in a training sample and

test sample. The AER is then estimated by the proportion of misclassified

objects in the test sample while the training sample was used to construct

the classification rule. However, there are two drawbacks with this approach

• It requires large samples.

• The classification rule is less precise because we do not use the informa-

tion from the test sample to build the classifier.



4. Evaluating Classification Rules 15

An alternative is the (leave-one-out) cross-validation or jackknife proce-

dure which works as follows.

1. Leave one object out of the sample and construct a classification rule

based on the remaining n− 1 objects in the sample.

2. Classify the left-out observation using the classification rule constructed

in step 1.

3. Repeat the two previous steps for each of the objects in the sample.

Denote nCV
1M and nCV

2M the number of left-out observations misclassified

in class 1 and 2 respectively.

Then a good estimate of the actual error rate is given by

ˆAER =
nCV

1M + nCV
2M

n1 + n2

Example 3. We consider a sample of size n = 98 containing the response

to visual stimuli for both eyes measured for patients suffering from multiple-

sclerosis and for controls (healthy patients). Based on these measured re-

sponses and age we want to develop a rule that will allow to classify poten-

tial patients. Estimate the actual error rate as well. The assumption of equal

covariances is acceptable. Prior probabilities and cost of misclassification are

undetermined and thus considered to be equal.



4. Evaluating Classification Rules 16

Analyzing the data in S-Plus we find the group means

x̄1 =




37.98551

1.562319

1.62029


 and x̄2 =




42.06897

12.275862

13.08276


 and

the pooled covariance matrix Spooled =




231.9880 −2.09989 −6.4015

−2.09989 93.81391 87.0732

−6.4015 87.0732 104.0572




The classification rule becomes: Classify patient as suffering from multiple-

sclerosis if ŷ − m̂ = −0.012x1 + 0.019x2 + 0.147x3 + 1.657 ≥ 0 and otherwise

the patient is healthy. Based on the training sample we obtain the following

misclassifications: n1M = 14 and n2M = 3 which yields the apparent error

rate APER = 14+3
98 = 17.3%.

On the other hand, by using cross-validation we obtain the misclassifica-

tions nCV
1M = 15 and nCV

2M = 5 which yields the estimated actual error rate

ˆAER = 15+5
98 = 20.4% which is 3% higher!

Note that three times as many persons are misclassified as MS patients than

as healthy even while misclassification cost was assumed equal.
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5. Classification with Several Populations

We now consider the more general situation of separating objects from g

(g ≥ 2) classes and assigning new objects to one of these g classes.

For i = 1, . . . , g denote

• fi the density associated with population πi

• pi the prior probability of population πi

• Ri the subspace of outcomes assigned to πi

• c(j|i) the cost of misclassifying an object to πj when it is from πi

• P (j|i) the conditional probability of assigning an object of πi to πj.

The (conditional) expected cost of misclassifying an object of population π1

is given by

ECM(1) = P (2|1)c(2|1) + · · ·+ P (g|1)c(g|1)

=

g∑
i=2

P (i|1)c(i|1)

and similarly we can determine the expected cost of misclassifying objects of

population π2, . . . , πg. It follows that the overall ECM equals

ECM =

g∑
j=1

pj ECM(j) =

g∑
j=1

pj

g∑
i=1
i6=j

P (i|j)c(i|j)
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Result 4. The classification rule that minimizes the ECM assigns each

object x to the population πi for which

g∑
j=1
j 6=i

pjfj(x)c(i|j)

is smallest. If the minimum is not unique then x can be assigned to any of

the populations for which the minimum is attained.

(without proof)

Special Case: If all misclassification costs are equal (or unknown) we assign

x to the population πi for which
∑g

j=1
j 6=i

pjfj(x) is smallest, or equivalently for

which pifi(x) is largest. We thus obtain

Classify x as πi if pifi(x) > pjfj(x) ∀j 6= i
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5.1. Classification with Normal Populations

The density of population πi (i = 1, . . . , g) is now given by

fi(x) =
1

(2π)p/2det(Σi)
1/2e

−1
2(x− µi)

τΣ−1
i (x− µi).

Result 5. If all misclassification costs are equal (or unknown) we assign x

to the population πi if the (quadratic) score di(x) =
g

max
j=1

dj(x) where the

scores are given by

dj(x) = −1

2
ln(det(Σj))− 1

2
(x− µj)

τΣ−1
j (x− µj) + ln(pj) j = 1, . . . , g

Proof. We assign x to πi if ln(pifi(x)) = max ln(pjfj(x)) and

ln(pjfj(x)) = ln(pj)−
(

p
2

)
ln(2π)− 1

2 ln(det(Σj))− 1
2(x− µj)

τΣ−1
j (x− µj).

Dropping the second term which is constant yields the result.

In practice, the parameters µj and Σj are unknown and will be replaced by

the sample means x̄j and covariances Sj which yields the sample classification

rule

Classify x as πi if the (quadratic) score d̂i(x) =
g

max
j=1

d̂j(x) where the scores

are given by

d̂j(x) = −1

2
ln(det(Sj))− 1

2
(x− x̄j)

τS−1
j (x− x̄j) + ln(pj) j = 1, . . . , g
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If all covariance matrices are equal: Σj = Σ for j = 1, . . . , g, then the

quadratic scores dj(x) become

dj(x) = −1

2
ln(det(Σ))− 1

2
xτΣ−1x + µτ

jΣ
−1x− 1

2
µτ

jΣ
−1µj + ln(pj).

The first two terms are the same for all dj(x) so they can be left out, which

yields the (linear) scores dj(x) = µτ
jΣ

−1x− 1
2µ

τ
jΣ

−1µj + ln(pj).

To estimate these scores in practice we use the sample means x̄j and the

pooled estimate of Σ given by

Spooled =
1

(n1 − 1) + · · ·+ (ng − 1)
[(n1 − 1)S1 + · · ·+ (ng − 1)Sg]

which yields the sample classification rule

Classify x as πi if the (linear) score d̂i(x) =
g

max
j=1

d̂j(x) where the scores are

given by

d̂j(x) = x̄τ
jS

−1
pooledx−

1

2
x̄τ

jS
−1
pooledx̄j + ln(pj) j = 1, . . . , g

Remark. In the case of equal covariance matrices, the scores dj(x) can also

be reduced to

dj(x) = −1

2
(x− µj)

τΣ−1(x− µj) + ln(pj) = −1

2
d2

Σ(x, µj) + ln(pj)

Which can be estimated by d̂j(x) = −1
2d

2
Spooled

(x, x̄j) + ln(pj).

If the prior probabilities are all equal (or unknown) we thus assign an object

x to the closest population.
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Example 4. The admission board of a business school uses two measures to

decide on admittance of applicants:

• GPA= undergraduate grade point average

• GMAT=graduate management aptitude test score

Based on these measures applicants are categorized as: admit (π1), do not

admit (π2), and borderline (π3). The training set is shown below.
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Based on the training sample with group sizes n1 = 31, n2 = 28, and n3 = 26

we calculate the group means

x̄1 =


 3.40

561.23


 , x̄2 =


 2.48

447.07


 , and x̄3 =


 2.99

446.23


 ,

and their pooled covariance matrix Spooled =


 0.0361 −2.0188

−2.0188 3655.9011



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With equal prior probabilities we assign a new applicant x = (x1, x2)
τ to

the closest class, so we compute its (quadratic) distance to each of the three

classes:

d2
Spooled

(x, x̄1) = (x− x̄1)
τSpooled(x− x̄1)

d2
Spooled

(x, x̄2) = (x− x̄2)
τSpooled(x− x̄2)

d2
Spooled

(x, x̄3) = (x− x̄3)
τSpooled(x− x̄3)

Suppose a new applicant has test scores xτ = (3.21, 497) then we obtain

d2
Spooled

(x, x̄1) =
(
3.21− 3.40 497− 561.23

)

28.61 0.016

0.016 0.0003





 3.21− 3.40

497− 561.23




= 2.58

d2
Spooled

(x, x̄2) =
(
3.21− 2.48 497− 447.07

)

28.61 0.016

0.016 0.0003





 3.21− 2.48

497− 447.07




= 17.10

d2
Spooled

(x, x̄3) =
(
3.21− 2.99 497− 446.23

)

28.61 0.016

0.016 0.0003





 3.21− 2.99

497− 446.23




= 2.47

The distance from x to π3 is thus smallest such that this applicant is a

borderline case.


